Name: 
$$\int o[u_1] du_2$$
  
Math 4200 Quiz week 11 November 4, 2020  
1a) The function  $f(z) = \frac{e^{\frac{1}{z}}}{1-z}$  is analytic for  $0 < |z| < 1$ . Find its residue at  $z_0 = 0$ .  
 $coeff = \frac{1}{z}$  (6 points)  
 $e^{\frac{1}{z}} + \frac{1}{1-z} = (1 + (\frac{1}{z}) + (\frac{1}{z})$ 

often easier to write series out long-form rather than with Z notation.

1b) Let  $\gamma$  be the circle of radiius  $\frac{1}{2}$  centered at the origin. For the function f(z) in part (a), find

$$\oint_{\gamma} f(z) dz = 2\pi i \operatorname{Res}(f; o) = 2\pi i (e-i)$$
(4 points)

Math 4200 Friday November 6

- 4.1 Calculating residues at isolated singularities
  4.2 The <u>Residue Theorem(s)</u> tie together and extend previous contour integration tricks.

Announcements: numbering typo on this due today - last problem should be 10.5  
any hus ?'s ?  
(et f entire  
3.3.20b) Consider 
$$f(\frac{1}{2})$$
.  
Midkum a week from today. then §4.2.  
\* for a practice exam ~ look at fall 2011 exam 2.

<u>Residue Theorem</u> (Replacement Theorem version): Let f be analytic on a region A, except on a finite set of isolated singularities  $\{z_1, z_2, \dots z_k\} \subseteq A$  Let  $\gamma$  be a simple closed contour in A which contains none of the singularities, and which bounds a a <u>subregion B</u> containing some of the singularities, in the counterclockwise direction. Then

• 
$$\int_{\gamma} f(z) \, dz = 2 \pi i \sum_{z_j \in B} \operatorname{Res}(f, z_j)$$

*proof:* Use The section 2.2 Replacment Theorem for domains with holes together Laurent series for f at the singularities, and the diagram below. Notice our notation for residues...

Exercise: Show - just for the practice - that this theorem includes as special cases  
(a) Cauchy's theorem that 
$$\int f(z) dz = 0$$
 if  $f$  is analytic in  $A$ .  
(b) CIF  $\int \frac{1}{2\pi i \int_{\gamma} \frac{f(z)}{z-z_0} dz} \int \frac{1}{z-z_0} dz$  is inside  $\gamma$  and  $f$  is analytic in  $A$ .

So we would like systematic ways to compute residues. There's a page in the book...

hean 
$$g(z) = \frac{q_0 + q_1(z-z_0) + q_2(z-z_0)^2 + \cdots}{(z-z_0)}$$
  
 $= \frac{q_0}{(z-z_0)} + q_1 + q_2(z-z_0)^2 + \cdots$   
Res  $[q_j; z_0] = q_0 = f(z_0)$   
Res  $\int_{\gamma} g(z) dz = 2\pi i \operatorname{Res}[q_j; z_0] = 2\pi i f(z_0)$ 

## 94.1 hour to compute veridues ~ it all goes back to power series (Prop 4.1.7. f(z) = g(z) g(zo) ≠0. h(z) zero of order k-1, trichs. 250 Chapter 4 Calculus of Residues

the residue at  $z_0$ ,  $\operatorname{Res}(g/h; z_0)$  is given by

$$\operatorname{Res}(g/h; z_0) = \left[\frac{k!}{h^{(k)}(z_0)}\right]^k \times \left| \begin{array}{cccccc} \frac{h^{(k)}(z_0)}{k!} & 0 & 0 & \cdots & 0 & g(z_0) \\ \frac{h^{(k+1)}(z_0)}{(k+1)!} & \frac{h^{(k)}(z_0)}{k!} & 0 & \cdots & 0 & g^{(1)}(z_0) \\ \frac{h^{(k+2)}(z_0)}{(k+2)!} & \frac{h^{(k+1)}(z_0)}{(k+1)!} & \frac{h^{(k)}(z_0)}{k!} & \cdots & 0 & \frac{g^{(2)}(z_0)}{2!} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ \frac{h^{(2k-1)}(z_0)}{(2k-1)!} & \frac{h^{(2k-2)}(z_0)}{(2k-2)!} & \frac{h^{(2k-3)}(z_0)}{(2k-3)!} & \cdots & \frac{h^{(k+1)}(z_0)}{(k+1)!} & \frac{g^{(k-1)}(z_0)}{(k-1)!} \end{array} \right|,$$

where the vertical bars denote the determinant of the enclosed  $k \times k$  matrix.

## Table 4.1.1 Techniques for Finding Residues

In this table g and h are analytic at  $z_0$  and f has an isolated singularity. The most useful and common tests are indicated by an asterisk.

|                                                                                 |                                                                                                                                                                 |                                                                                                                  | Type of           |                                                                                                |
|---------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|-------------------|------------------------------------------------------------------------------------------------|
|                                                                                 | Function                                                                                                                                                        | Test                                                                                                             | Singularity       | Residue at $z_0$                                                                               |
|                                                                                 | 1. f(z)                                                                                                                                                         | $\lim_{z\to z_0}(z-z_0)f(z)=0$                                                                                   | removable         | 0                                                                                              |
| 2 4                                                                             | *2. $\frac{g(z)}{h(z)}$                                                                                                                                         | $g$ and $h$ have zeros of same order $\rightarrow \mathbb{N}$                                                    | removable         | 0                                                                                              |
| $\frac{q(z)}{h(z)}$                                                             | *3. $f(z)$                                                                                                                                                      | $\lim_{z \to z_0} (z - z_0) f(z) = 0$<br>exists and is $\neq 0$                                                  | simple pole       | $\lim_{z\to z_0}(z-z_0)f(z)$                                                                   |
|                                                                                 | *4. $\frac{g(z)}{h(z)}$                                                                                                                                         | $egin{aligned} g(z_0) eq 0, h(z_0) &= 0,\ h'(z_0) eq 0 \end{aligned}$                                            | simple pole       | $\frac{g(z_0)}{h'(z_0)}$                                                                       |
| $\frac{4}{N(z-z_0)} \neq \frac{4}{N+1}$                                         | $\frac{f_{0}}{\frac{1}{5}} + \frac{g(z)}{h(z)}$                                                                                                                 | g has zero of order $k$ ,<br>h has zero of order $k + 1$                                                         | simple pole       | $(k+1)rac{g^{(k)}(z_0)}{h^{(k+1)}(z_0)}$                                                      |
| PN(2-2) + PNH                                                                   | $\begin{array}{c} \left(\begin{array}{c} 1 \\ * \end{array}\right)^{*} \\ \left(\begin{array}{c} g(z) \\ \overline{h(z)} \end{array}\right)^{*} \\ \end{array}$ | $g(z_0) \neq 0 h(z_0) = 0 = h'(z_0) h''(z_0) \neq 0$                                                             | second-order pole | $2\frac{g'(z_0)}{h''(z_0)} - \frac{2}{3}\frac{g(z_0)h'''(z_0)}{[h''(z_0)]^2}$                  |
| $\left(\frac{2}{2},\frac{2}{2}\right)^{N}$ $\left(\frac{q_{N}+q_{1}}{2}\right)$ | g(z)                                                                                                                                                            | $g(z_0) \neq 0$                                                                                                  | second-order pole | $g'(z_0)$                                                                                      |
| (3~2)N LON + 6                                                                  | $Nm^{(2-3)(z)}_{h(z)}$                                                                                                                                          | $g(z_0) = 0, g'(z_0) \neq 0, h(z_0) = 0 = h'(z_0) = h''(z_0), h'''(z_0) \neq 0$                                  | second-order pole | $3\frac{g''(z_0)}{h'''(z_0)} = \frac{3}{2}\frac{g'(z_0)h^{(iv)}(z_0)}{[h'''(z_0)]^2}$          |
| analytic at                                                                     | $\mathbf{\hat{z}}_{0}^{9}$ . $f(z)$                                                                                                                             | k is the smallest integer such<br>that $\lim_{z \to z_0} \phi(z_0)$ exists where<br>$\phi(z) = (z - z_0)^k f(z)$ | pole of order $k$ | $\lim_{z \to z_0} \frac{\phi^{(k-1)}(z)}{(k-1)!}$                                              |
| fins where<br>denom 70                                                          | $\overset{\bullet}{*}10.  \frac{g(z)}{h(z)}$                                                                                                                    | g has zero of order $l$ ,<br>h has zero of order $k + l$                                                         | pole of order $k$ | $\lim_{z \to z_0} \frac{\phi^{(k-1)}(z)}{(k-1)!}$<br>where $\phi(z) = (z - z_0)^k \frac{g}{h}$ |
| at zo                                                                           | 11. $\frac{g(z)}{h(z)}$                                                                                                                                         | $g(z_0) \neq 0, h(z_0) = \ \dots = h^{k-1}(z_0) = 0, h^k(z_0) \neq 0$                                            | pole of order $k$ | see Proposition 4.1.7.                                                                         |

 $\frac{\text{Table entry 4}:}{\text{Table entry 4}:} \quad \text{Let } f(z) = \frac{g(z)}{h(z)} \text{ where } g(z_0) \neq 0, h(z_0) = 0, h'(z_0) \neq 0. \text{ Prove}$ that f has a pole of order 1, and  $e \operatorname{Res}(f, z_0) = \frac{g(z_0)}{h'(z_0)}$   $\frac{f}{h(z)} = \frac{q(z)}{q_0' + q_1(z - z_0) + \dots}$   $= \frac{1}{z - z_0} \left( \frac{q_0 + q_1(z - z_0) + \dots}{b_1 + b_2(z - z_0)^2 + \dots} \right)$   $= \frac{1}{z - z_0} \left( \frac{q_0 + q_1(z - z_0) + \dots}{b_1 + b_2(z - z_0)^2 + \dots} \right)$   $= \frac{1}{z - z_0} \left( \frac{q_0 + q_1(z - z_0) + \dots}{b_1 + b_2(z - z_0)^2 + \dots} \right)$   $= \frac{1}{z - z_0} \left( \frac{q_0 + q_1(z - z_0) + \dots}{b_1 + b_2(z - z_0)^2 + \dots} \right)$   $= \frac{1}{z - z_0} \left( \frac{q_0 + q_1(z - z_0) + \dots}{b_1 + b_2(z - z_0) + \dots} \right)$   $= \frac{1}{z - z_0} \left( \frac{q_0 + q_1(z - z_0) + \dots}{b_1 + b_2(z - z_0) + \dots} \right)$   $= \frac{q(z_0)}{b_1 + b_2(z - z_0) + \dots}$ 

• *Example:* The table entry above is great for quotient functions in general, as long as h(z) only has zeroes of order 1. So it makes many rational function contour integrals a breeze, without having to use long division and/or partial fractions.

Compute  $\int_{|z|=3} \frac{z^3}{z^2-2z} dz$  (And notice that it would be just as easy for an arbitrary analytic function in the numerator.

Table entry 4: Let 
$$f(z) = \frac{g(z)}{h(z)}$$
 where  $g(z_0) \neq 0$ ,  $h(z_0) = 0$ ,  $h'(z_0) \neq 0$ . Prove  
that  $f$  has a pole of order 1, and  
  
Cheft 2  $2^2 - 22 = 2(2 - 2)$   
long div.  
partract  
definition  
thin  
(replacement),  
  
 $f(z) = \frac{z^3}{2} = \frac{g(z)}{h(z)}$   
 $f(z) = \frac{z}{2\pi i} = \frac{g(z)}{h(z)}$   
 $f(z) = \frac{g(z)}{h(z)}$   
 $f(z) = 2\pi i \left[\frac{g(z)}{h(z)} + \frac{g(z)}{h(z)}\right]$   
 $f(z) = 2\pi i \left[\frac{g(z)}{h(z)} + \frac{g(z)}{h(z)}\right]$ 

<u>Table entry 7:</u> If f(z) has a pole of order k at  $z_0$ , and has the form

*Example* Compute 
$$Res\left(\frac{e^{2z}}{(z-1)^2};1\right)$$

then

Table entry 6: Let  $f(z) = \frac{g(z)}{h(z)}$  where  $\underline{g(z_0)} \neq 0$ ,  $\underline{h(z_0)} = h'(z_0) = 0$ ,  $h''(z_0) \neq 0$ . Then f has a pole of order 2 and  $Res(f, z_0) = \frac{2 g'(z_0)}{h''(z_0)} - \frac{2}{3} \frac{g(z_0)h'''(z_0)}{h''(z_0)^2}$ 111 (This leads into Prop 4.1.7, your extra credit hw problem.  $f(z) = \frac{x}{b_{1}(z-z_{0})^{2} + b_{2}(z-z_{0})^{2}}$  $f(z) = \frac{1}{(z-z)^2} \cdot \left( \begin{array}{c} \text{analytic } \$ \neq 0 \\ \text{at } \ddagger \end{array} \right)$  $\left(\begin{array}{c} \frac{C_{-2}}{(2-z_{0})^{2}} + \frac{C_{-1}}{(2-z_{0})} + c_{0} + c_{1}(2-z_{0}) + \cdots \right) \left(b_{2}(2-z_{0})^{2} + b_{3}(2-z_{0}) + \cdots \right) = a_{0} + c_{1}(2-z_{0}) + a_{2}(2-z_{0})^{2} + \cdots + a_{2}(2-z_$ equate power coef's.  $(2-2)^{\circ}: C_{-2}b_{2} = 9$ (z-z)':  $c_{-2}b_3 + c_{-1}b_2 = q_1$  $\begin{vmatrix} b_2 & 0 \\ b_1 & b_n \end{vmatrix} \begin{vmatrix} c_{-1} \\ c_{-1} \end{vmatrix} = \begin{pmatrix} a_0 \\ a_n \end{vmatrix}$  $= \frac{q_1}{b_1} - \frac{b_3 q_0}{b_2}$  $= \frac{q'(z_{0})}{\frac{1}{2}h''(z_{0})} - \frac{\frac{1}{3!}h''(z_{0})q(z_{0})}{(\frac{1}{2!}h''(z_{0})^{2})}$  $= \frac{2g'(z_0)}{h''(z_0)} - \frac{2}{3} \frac{h''(z_0)g(z_0)}{(h''(z_0))^2}$ 

<u>Residue Theorem</u> (Deformation Theorem version, more general than the Green's Theorem version.). Let Let f be analytic on a region A, except on a finite set of isolated singularities  $\{z_1, z_2, \dots z_k\} \subseteq A$ . Let  $\gamma$  be a closed curve which is homotopic to a point in A. Then

$$\int_{\gamma} f(z) \, dz = 2 \, \pi \, i \sum_{j=1}^{k} \operatorname{Res}(f, z_j) \, I(\gamma; z_j)$$

Being more general than the Green's Theorem version, this proof is also a bit more complicated. For each isolated singularity  $z_j$  we have the Laurent series

$$S_{j}(z) = S_{j1}(z) + S_{j2}(z) = \sum_{n=0}^{\infty} a_{jn} (z - z_{j})^{n} + \sum_{m=1}^{\infty} \frac{b_{jm}}{(z - z_{j})^{m}}$$

Because the  $z_j$  are point singularities, the singular part of the series,  $S_{j2}(z)$  converges in  $\mathbb{C} \setminus \{z_j\}$ , and the non-singular part converges for  $0 \le |z - z_j| < R_j$  for some positive radius of convergence  $R_j$ .

Now consider

$$g(z) := f(z) - \sum_{j=1}^{k} S_{j2}(z).$$

Explain why g(z) has removable singularities at each  $z_l$ :



Thus we may consider g to be analytic in A, so since  $\gamma$  is homotopic as closed curves to a point in A,

$$\int_{\gamma} g(z) \, dz = 0.$$

Expand this to get the result!

## Math 4200-001 Homework 11 4.1-4.2 Due Wednesday November 11 at 11:59 p.m. Exam will cover thru 4.2

4.1 1de, 3, 5, 7ab, 9

4.2 2 (Section 2.3 Cauchy's Theorem), 3, 4, 6, 9, 13.

w11.1 (extra credit) Prove Prop 4.1.7, the determinant computation for the residue at an order k pole for  $f(z) = \frac{g(z)}{h(z)}$  at  $z_0$ , where  $g(z_0) \neq 0$ . (Hint: it's Cramer's rule for a system of equations.)