
Name: _______________________________________

Math 4200 Quiz week 11        November 4, 2020

1a)  The function f z = e
1
z

1 z is analytic for 0  z  1.  Find its residue at z0 = 0.

(6 points)

1b)  Let  be the circle of radiius 1
2  centered at the origin.  For the function f z  in 

part (a), find 
 f z  dz.

(4 points)
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Math 4200
Friday November 6

4.1 Calculating residues at isolated singularities
4.2  The Residue Theorem(s) - tie together and extend previous contour integration 
tricks.
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Residue Theorem (Replacement Theorem version):  Let f  be analytic on a region A , 
except on a finite set of isolated singularities z1, z2, ... zk A  Let  be a simple 
closed contour in A  which contains none of the singularities, and which bounds a a 
subregion B  containing some of the singularities, in the counterclockwise direction.  
Then

 f z  dz = 2  i 
zj B

Res f, zj .

proof:  Use The section 2.2 Replacment Theorem for domains with holes together 
Laurent series for f  at the singularities, and the diagram below.  Notice our notation for
residues...

Exercise:  Show - just for the practice - that this theorem includes as special cases
(a)  Cauchy's theorem that   f z  dz = 0 if f  is analytic in A .

(b)  CIF  f z0 = 1
2  i

 f z
z z0

 dz  if z0  is inside  and f is analytic in A .

So we would like systematic ways to compute residues.  There's a page in the book...
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Table entry 4:    Let f z = g z
h z

 where g z0 0, h z0 = 0, h z0 0.  Prove 

that  f   has a pole of order 1, and

Res f, z0 =
g z0
h z0

Example:  The table entry above is great for quotient functions in general, as long as 
h z  only has zeroes of order 1.  So it makes many rational function contour integrals a 
breeze, without having to use long division and/or partial fractions. 

Compute  
z = 3

  z3

z2 2 z
dz   (And notice that it would be just as easy for an arbitrary 

analytic function in the numerator.
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Table entry 7:  If f z  has a pole of order k at z0 , and has the form 

f z = g z
z z0

k

then

Res f, z0 =
g k 1 z0
k 1 !

Example   Compute Res e2 z
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Table entry 6:   Let f z = g z
h z

 where g z0 0, h z0 = h z0 = 0, h z0 0.

 Then f  has a pole of order 2 and

Res f, z0 =
2 g z0
h z0

 2
3

g z0 h z0
h z0

2       !!!

(This leads into Prop 4.1.7, your extra credit hw problem.)
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Residue Theorem  (Deformation Theorem version, more general than the Green's 
Theorem version.).  Let Let f  be analytic on a region A , except on a finite set of 
isolated singularities z1, z2, ... zk A .  Let  be a closed curve which is homotopic to
a point in A .  Then

 f z  dz = 2  i 
j = 1

k

Res f, zj  I ; zj

Being more general than the Green's Theorem version, this proof is also a bit more 
complicated.  For each isolated singularity zj we have the Laurent series

Sj z = Sj1 z Sj2 z =
n = 0

ajn z zj
n

m = 1

bjm
z zj

m .

Because the zj are point singularities, the singular part of the series, Sj2 z  converges in 
zj , and the non-singular part converges for 0 z zj Rj for some positive 

radius of convergence Rj.

Now consider 

g z f z
j = 1

k

Sj2 z .

Explain why g z  has removable singularities at each zl:  
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Thus we may consider g to be analytic in A , so since  is homotopic as closed curves to 
a point in A ,

 g z  dz = 0.

Expand this to get the result!



Math 4200-001
Homework 11

4.1-4.2
Due Wednesday November 11 at 11:59 p.m.

Exam will cover thru 4.2

4.1   1de, 3, 5, 7ab, 9 
4.2   2 (Section 2.3 Cauchy's Theorem), 3, 4, 6, 9, 13.

w11.1 (extra credit)  Prove Prop 4.1.7,  the determinant computation for the residue at 

an order k pole for f z = g z
h z

 at z0 , where g z0 0.  (Hint: it's Cramer's rule for 

a system of equations.)


